Histaminergic neurons protect the developing hippocampus from kainic acid-induced neuronal damage in an organotypic coculture system.
نویسندگان
چکیده
The central histaminergic neuron system inhibits epileptic seizures, which is suggested to occur mainly through histamine 1 (H1) and histamine 3 (H3) receptors. However, the importance of histaminergic neurons in seizure-induced cell damage is poorly known. In this study, we used an organotypic coculture system and confocal microscopy to examine whether histaminergic neurons, which were verified by immunohistochemistry, have any protective effect on kainic acid (KA)-induced neuronal damage in the developing hippocampus. Fluoro-Jade B, a specific marker for degenerating neurons, indicated that, after the 12 h KA (5 microM) treatment, neuronal damage was significantly attenuated in the hippocampus cultured together with the posterior hypothalamic slice containing histaminergic neurons [HI plus HY (POST)] when compared with the hippocampus cultured alone (HI) or with the anterior hypothalamus devoid of histaminergic neurons. Moreover, alpha-fluoromethylhistidine, an inhibitor of histamine synthesis, eliminated the neuroprotective effect in KA-treated HI plus HY (POST), and extracellularly applied histamine (1 nM to 100 microM) significantly attenuated neuronal damage only at 1 nM concentration in HI. After the 6 h KA treatment, spontaneous electrical activity registered in the CA1 subregion contained significantly less burst activity in HI plus HY (POST) than in HI. Finally, in KA-treated slices, the H3 receptor antagonist thioperamide enhanced the neuroprotective effect of histaminergic neurons, whereas the H1 receptor antagonists triprolidine and mepyramine dose-dependently decreased the neuroprotection in HI plus HY (POST). Our results suggest that histaminergic neurons protect the developing hippocampus from KA-induced neuronal damage, with regulation of neuronal survival being at least partly mediated through H1 and H3 receptors.
منابع مشابه
The effect of silymarin on prevention of hippocampus neuronal damage in rats with temporal lob epilepsy
Background and Objective: Temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity of silymarin (SM), this study was undertaken to evaluate the preventive effect of this agent on structural changes in hippocampus of kainate-epileptic rats. Materia...
متن کاملNeuronal damage of the dorsal hippocampus induced by long-term right common carotid artery occlusion in rats
Objective(s):The present study investigated the effect of long-term mild cerebral hypoperfusion induced by permanent unilateral (right) common carotid artery occlusion (UCO) on the dorsal hippocampal neurons in rats. Materials and Methods:Sixty four male Sprague-Dawley rats aged 4 months were divided into two groups of sham and UCO. These two groups were further divided into 4 sets of histopath...
متن کاملKainic Acid-induced Seizures: Inflammation and Excitotoxic Neuronal Damage in the Developing Rat Hippocampus
5
متن کاملChange of Nurr1 expression in mouse hippocampal CA3 region following excitotoxic neuronal damage
Objective(s): Nuclear receptor-related protein 1 (Nurr1), one of immediate-early genes, is a member of orphan nuclear receptor family. The aim of this study was to investigate the time-dependent change of Nurr1 protein expression in the mouse hippocampal CA3 region following kainic acid (KA)-induced excitotoxic neuronal damage.Materials and Methods:</...
متن کاملOrganotypic culture of central histamine neurons.
Organotypic cultures of histaminergic tuberomammillary (TM) neurons were grown using explants obtained from newborn rats. The cultures were examined after immunohistochemical localization of the histamine synthetic enzyme, L-histidine decarboxylase (HDC). The morphological properties of the somata, dendrites and axons of HDC-immunoreactive TM neurons in organotypic culture were virtually indist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2006